Estimating Item Parameters and Student Abilities: An IRT 2PL Analysis of Mathematics Examination

Jumini Jumini, Heri Retnawati

Abstract


This research aims to describe the characteristics of math test instruments are tested on 373 of 10th-grade vocational high school students and to describe student abilities. The analysis was conducted using the Item Response Theory (IRT) approach with the  2 Parameter Logistic  (2PL) model. The whole analysis process was conducted with the help of the R Program, SPSS and Excel. This finding shows that 2 items did not fit the 2 PL model. Of the 28 items that fit the 2PL model, 3 do not have a good discriminating index because they have negative values. Of 30 items that were tested, 3 items were very easy, 21 items were moderate, one item was difficult, and five items were very difficult. Student abilities ranged between -4.69 logit and 4.09 logit with an average of 0.05 logit. Based on the category, the proportion of students with moderate ability reached 63.54%, high ability 15.28%, very high ability 1.34%, while students with low ability were 19.57%, and very low ability was only 0.27%.  The maximum information function of this test was 29,37 (has good category) on the ability (θ) of -0,8 logit and SEM of 0.18 logit. Overall, the test was suitable for students with abilities between -2,6 and 2,4 logit. Based on these results, 25 items can be included in the question bank with suggestions for improvement in the proportion of difficulty level to reach a normal curve balance.

Keywords


Item response theory, Mathematics examination, Two parameter logistic

Full Text:

PDF

References


Azwar, S. (2016). Tes Prestasi (2nd ed.). Pustaka Pelajar.

Azwar, S. (2019). Reliabilitas dan Validitas (IV). Pustaka Pelajar.

Choppin, B. (1976). Development in Items Banking. National Standards of Attainment in Schools.

Direktorat Pembinaan Sekolah Menengah Kejuruan Kemdikbud RI. (2018). Panduan Penilaian Hasil Belajar dan Pengembangan Karakter pada Sekolah Menengah Kejuruan. Kemdikbud RI. psmk.kemdikbud.go.id

Dwianjani, N. K. V., & Candiasa, I. M. (2018). Identifikasi Faktor-Faktor yang Mempengaruhi Kemampuan Pemecahan Masalah Matematika. Jurnal Matematika Dan Pendidikan Matematika, 2(2). https://doi.org/https://doi.org/10.25217/numerical.v2i2.276

Eleje, L. ., & Onah, F. E. (2018). Comparative Study of Classical Test Theory and Item Response Theory Using Diagnostic Quantitative Economics Skill Test Item Analysis Results. European Journal of Educational & Social Sciences, 3(1), 71–89.

Falani, I., & Kumala, S. A. (2017). Kestabilan Estimasi Parameter Kemampuan Pada Model Logistik Item Response Theory Ditinjau dari Panjang Tes. Jurnal Susunan Artikel Pendidikan (SAP), 2(2). https://doi.org/10.30998/sap.v2i2.2028

Hambleton, R. K., & Swaminathan, H. (1985). Items Response Theory: Principles and Application. Kluwer-Nijjhoff Publish.

Hambleton, R. K., Swaminathan, H., & Rogers, H. (1991). Fundamentals of Item Response Theory. Sage Publications.

Istiyono, E. (2018). Pengembangan Instrumen Penilaian dan Analisis Hasil Belajar Fisika Dengan Teori Tes Klasik dan Modern (First). UNY Press.

Kusuma, Y. Y. (2021). Analisis Hubungan Perhatian orang Tua Dengan Prestasi Belajar Pada Masa Pandemi Covid - 19. Jurnal Pendidikan Dan Konseling (JPDK), 3(1). https://doi.org/https://doi.org/10.31004/jpdk.v3i1.1384

Mardapi, D. (2012). Pengukuran Penilaian dan Evaluasi Pendidikan. Nuha Medika.

Moore, M., & Kearley, G. (1996). Distance education: A systems view. Wadsworth.

Mulvia, R., Ramalis, T. R., & Efendi, R. (2021). Mendeteksi Keajegan Butir Tes dengan Fungsi Informasi. Jurnal Pendidikan Indonesia, 2(1). https://doi.org/https://doi.org/10.36418/japendi.v2i1.66

Myszkowski, N. (2019). Development of the R library “jrt” : Automated Item-Response Theory procedures for judgment data and their application with the Consensual Assessment Technique. Psychology of Aesthetics Creativity and The Arts. https://doi.org/http://dx.doi.org/10.1037/aca0000287

Ojerinde, D. (2013). Classical Test Theory (CTT) VS Item Response Theory (IRT): An Evaluation of The Comparability of Item Analysis Result. Semantic Scholar. https://www.semanticscholar.org/paper/Classical-Test-Theory-(-CTT-)-VS-Item-Response-(-)-Ojerinde/aa27637d699b7e26ee1f7578d0fe2b8173ad769f

Pangondian, R. A., Santosa, P. I., & Nugroho, E. (2019). Faktor - Faktor Yang Mempengaruhi Kesuksesan Pembelajaran Daring. Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), 56–60.

Purnama, D. N., & Alfarisa, F. (2020). Karakteristik Butir Soal Try Out Teori Kejuruan Akuntansi SMK Berdasarkan Teori Tes Klasik dan Teori Respons Butir. Jurnal Pendidikan Akuntansi Indonesia, 18(1), 36–46. https://doi.org/http://dx.doi.org/10.21831/jpai.v18i1.31457

Retnawati, H. (2014). Teori Respons Butir dan Penerapannya. Parama Publishing.

Retnawati, H. (2016). Validitas Reliabilitas & Karakteristik Butir. Parama Publishing.

Salam, M., Misu, L., Rahim, U., Hindaryatiningsih, N., & Ghani, A. R. A. (2020). Strategies of Metacognition Based on Behavioural Learning to Improve Metacognition Awareness and Mathematics Ability of Students. International Journal of Instruction, 13(2), 61–72. https://doi.org/https://doi.org/10.29333/iji.2020.1325a

Snipes, M., & Taylor, D. C. (2014). Model selection and Akaike Information Criteria: An Example from Wine Ratings and Prices. Wine Economic and Policy, 1. https://doi.org/http://dx.doi.org/10.1016/j.wep.2014.03.001

Sudjana, N. (2012). Penilaian hasil Proses Belajar Mengajar. Remaja Rosdakarya.

Supriadi, N., Syazali, M., Lestari, B. D., Dewi, E. S., Utami, L. F., Mardani, L. A., & Putra, F. G. (2018). The Utilization of Project Based Learning and Guided Discovery Learning: Effective Methods to Improve Students’ Mathematics Ability. Al-Ta’lim Journal, 25(3). https://doi.org/https://doi.org/10.15548/jt.v25i3.487

Suyata, P., Mardapi, D., & Kartowagiran, B. (2010). Identifikasi Need Assessment:Studi Awal Model Pengembangan Bank Soal Berbasis Guru Di Provinsi DIY. Jurnal Kependidikan, 40(1). https://doi.org/https://doi.org/10.21831/jk.v40i1.512

Syafari, Y., & Montessori, M. (2021). Analisis Pembelajaran Daring Terhadap Motivasi Belajar Dan Prestasi Belajar Siswa Dimasa Pandemi Covid-19. Jurnal Basicedu, 5(3). https://doi.org/https://doi.org/10.31004/basicedu.v5i3.872

Tulak, E. T., Raupong, & Ilyas, N. (2017). Penerapan Regresi Robust Principal Component Analysis Pada Data yang Mengandung Multikolinieritas dan Outlier [Universitas Hasanudin]. http://digilib.unhas.ac.id/opac/detail-opac?id=38231

Ulandari, L., Amry, Z., & Saragih, S. (2019). Development of Learning Materials Based on Realistic Mathematics Education Approach to Improve Students’ Mathematical Problem Solving Ability and Self-Efficacy. International Electronic Journal of Mathematics Education, 14(2), 375–383. https://doi.org/https://doi.org/10.29333/iejme/5721

Wiberg, M. (2004). Classical Test Theory vs. Item Response Theory. Umea Universitet.

Widana, I. W. (2014). Pengembangan Bank Soal. Jurnal EMASAINS, 3(2), 186–197.

Worten, B. R., & Sanders, J. R. (1987). Educational Evaluation: Theory and Practice. Wadsworth.




DOI: https://doi.org/10.35445/alishlah.v14i1.926

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Jumini Jumini, Heri Retnawati

Al-Ishlah Jurnal Pendidikan Abstracted/Indexed by:

    

 


 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.