Bibliometric and Systematic Review of AI-Assisted Adaptive Learning Applications in Vocational Education (2018-2023)
Abstract
Keywords
References
Adnan, M., & Anwar, K. (2020). Online learning amid the COVID-19 pandemic: Students’ perspectives. Journal of Pedagogical Sociology and Psychology, 2(1), 2–8.
Agustini, K., Saindra, G., Sugihartini, N., & Indrawan, G. (2018). Subject development for vocational students. Advances in Social Science, Education and Humanities Research, 201, 177–182.
Alfiah, F., Adnandi, M. A., & Wibowo, A. (2019). Expert system to identify students’ behavior and personality in vocational high schools. Jurnal Techno Nusa Mandiri, 16(2), 85–92. http://ejournal.nusamandiri.ac.id/index.php/techno/article/view/379
Anwar, M. (2021a). Designing an expert system for determining student learning styles using forward chaining in engineering education. Jurnal Konseling dan Pendidikan, 9(1), 93–101. https://doi.org/10.29210/159000
Anwar, M. (2021b). Prediction of graduation rates of engineering education students using artificial neural network algorithms. International Journal of Research in Counseling and Education, 5(1), 15–24. https://doi.org/10.24036/00411za0002
Ayca, C., & Hasan, K. (2017). An application of fuzzy analytic hierarchy process (FAHP) for evaluating students’ projects. Educational Research and Reviews, 12(3), 120–132. https://doi.org/10.5897/err2016.3065
Callejas, Z., Albacete-Maza, J., & Fernández-Aranda, F. (2023). Exploring folk songs to educate for resilience. On the Horizon, 31(3), 133–146. https://doi.org/10.1108/OTH-10-2022-0064
Carolus, A., Augustin, Y., & Wienrich, C. (2023). Digital interaction literacy model: Conceptualizing competencies for literate interactions with voice-based AI systems. Computers and Education: Artificial Intelligence, 4, Article 100114. https://doi.org/10.1016/j.caeai.2022.100114
Castro, R. (2019). Blended learning in higher education: Trends and capabilities. Education and Information Technologies, 24(4), 2523–2546. https://doi.org/10.1007/s10639-019-09886-3
Choy, M. W., & Yeung, A. S. (2022). Cognitive and affective academic self-concepts: Predictors of vocational education students’ career choice. International Journal of Educational Research Open, 3, Article 100123. https://doi.org/10.1016/j.ijedro.2022.100123
Christopoulos, A., & Sprangers, P. (2021). Integration of educational technology during the COVID-19 pandemic: Teacher and student perspectives. Cogent Education, 8(1), Article 1964690. https://doi.org/10.1080/2331186X.2021.1964690
Dasgupta, P. B. (2018). Detection and analysis of human emotions through voice and speech pattern processing. International Journal of Computer Trends and Technology, 52(1), 2–5. https://doi.org/10.14445/22312803/IJCTT-V52P101
Debnath, S., & Roy, P. (2021). Audio-visual automatic speech recognition using MFCC and statistical analysis. International Journal of Artificial Intelligence and Machine Learning Applications, 9(3), 121–133. https://doi.org/10.9781/ijimai.2021.09.001
Dharma, A. S., Tampubolon, L. A., & Purba, D. S. (2020). Drug stock prediction using adaptive neuro-fuzzy inference system. SinkrOn, 5(1), 26–34. https://doi.org/10.33395/sinkron.v5i1.10529
Dyah, C., Indrawati, S., Ninghardjanti, P., Huda, C., & Dirgatama, A. (2022). The effect of audiovisual-based practicum learning on vocational students’ learning outcomes. International Journal of Instructional Research and Evaluation, 11(1), 403–408. https://doi.org/10.11591/ijere.v11i1.21762
Firzatullah, R. M. (2021). Decision support system for determining tuition fees using backpropagation algorithm. Petir, 14(2), 170–180. https://doi.org/10.33322/petir.v14i2.996
Ghufron, M. A. (2018). Industrial Revolution 4.0: Challenges, opportunities, and solutions for education. Proceedings of National Multidisciplinary Seminar, 1(1), 332–337.
Gleason, N. W. (2018). Higher education in the era of the fourth industrial revolution. Springer. https://doi.org/10.1007/978-981-13-0194-0
Hattie, J., & Gregory, D. (2018). A model of learning: Optimizing the effectiveness of learning strategies. In Contemporary theories of learning (pp. 97–116). Routledge.
Jalinus, N., Verawardina, U., Nabawi, R. A., & Darma, Y. (2021). Developing a blended learning model in vocational education based on 21st-century skills. Turkish Journal of Computer and Mathematics Education, 12(9), 1276–1291.
Khalil, S., Hassan, A., Alaskar, H., Khan, W., & Hussain, A. (2021). Fuzzy logical algebra and effectiveness analysis of medical decision systems. Mathematics, 9(22), Article 2838. https://doi.org/10.3390/math9222838
Kusumawati, R. (2018). Artificial intelligence: Technology of the future. Ulul Albab: Jurnal Studi Islam, 9(2), 257–274. https://doi.org/10.18860/ua.v9i2.6218
Ma, Z. M., & Xu, Z. S. (2020). Computation of generalized linguistic term sets based on fuzzy logic. Granular Computing, 5(1), 17–28. https://doi.org/10.1007/s41066-019-00199-x
Maskar, S., Dewi, P. S., & Puspaningtyas, N. D. (2020). Online learning and blended learning: A comparative study. Prisma, 9(2), 154–164. https://doi.org/10.35194/jp.v9i2.1070
Muafi, M., Syafri, W., Prabowo, H., & Nur, S. A. (2021). Digital entrepreneurship in Indonesia: A human capital perspective. Journal of Asian Finance, Economics and Business, 8(3), 351–359. https://doi.org/10.13106/jafeb.2021.vol8.no3.0351
Omar, F., Bushby, S. T., & Williams, R. D. (2019). Assessing performance of control algorithms using AHP. Energy and Buildings, 199, 537–546. https://doi.org/10.1016/j.enbuild.2019.07.033
Reigeluth, C. M., & An, Y. (2020). Merging the instructional design process with learner-centered theory. Routledge. https://doi.org/10.4324/9781351117548
DOI: https://doi.org/10.35445/alishlah.v17i4.8019
Refbacks
Copyright (c) 2025 Harleni
Al-Ishlah Jurnal Pendidikan Abstracted/Indexed by:

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


.png)




