A Data-Driven Causal Modelling Analysis of Socio-Economic Factors and Its Impact on Student’s Performance: A Case Study of a Junior High School in Bali
Abstract
Keywords
Full Text:
PDFReferences
Alanzi, K. A. (2018). Female accounting students and their academic performance: evidence from Kuwait. Journal of Islamic Accounting and Business Research, 9(5), 662–672. https://doi.org/10.1108/JIABR-10-2016-0128
Albreiki, B., Zaki, N., & Alashwal, H. (2021). A systematic literature review of student’ performance prediction using machine learning techniques. Education Sciences, 11(9). https://doi.org/10.3390/educsci11090552
Anderkova, V., Adam, T., & Babic, F. (2022). Data-driven Student Performance Prediction. SAMI 2022 - IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics, Proceedings, 267–272. https://doi.org/10.1109/SAMI54271.2022.9780854
Bendangnuksung, & Prabu, D. (2018). Students’ Performance Prediction Using Deep Neural Network. International Journal of Applied Engineering Research, 13(2), 1171–1176. http://www.ripublication.com
Bosch, E., Seifried, E., & Spinath, B. (2021). What successful students do: Evidence-based learning activities matter for students’ performance in higher education beyond prior knowledge, motivation, and prior achievement. Learning and Individual Differences, 91(August), 102056. https://doi.org/10.1016/j.lindif.2021.102056
Bunce, L., Baird, A., & Jones, S. E. (2017). The student-as-consumer approach in higher education and its effects on academic performance. Studies in Higher Education, 42(11), 1958–1978. https://doi.org/10.1080/03075079.2015.1127908
Data, M. B., Zhao, L., Chen, K. U. N., Song, J. I. E., Zhu, X., Sun, J., Caulfield, B., & Namee, B. M. A. C. (2021). Academic Performance Prediction Based on. https://doi.org/10.1109/ACCESS.2020.3002791
Deng, H., Wang, X., Guo, Z., Decker, A., Duan, X., Wang, C., Alex Ambrose, G., & Abbott, K. (2019). PerformanceVis: Visual analytics of student performance data from an introductory chemistry course. Visual Informatics, 3(4), 166–176. https://doi.org/10.1016/j.visinf.2019.10.004
Dzogbenuku, R. K., Doe, J. K., & Amoako, G. K. (2022). Social media information and student performance: the mediating role of hedonic value (entertainment). Journal of Research in Innovative Teaching & Learning, 15(1), 132–146. https://doi.org/10.1108/JRIT-12-2020-0095
Fleming, M. L., & Malone, M. R. (1983). THE RELATIONSHIP OF STUDENT CHARACTERISTICS AND STUDENT PERFORMANCE IN SCIENCE AS VIEWED BY META-ANALYSIS RESEARCH*. In JOURNAL OF RESEARCH IN SCIENCE TEACHING (Vol. 20, Issue 5).
Gümüş, S., Bellibaş, M. Ş., & Pietsch, M. (2022). School leadership and achievement gaps based on socioeconomic status: a search for socially just instructional leadership. Journal of Educational Administration, 60(4), 419–438. https://doi.org/10.1108/JEA-11-2021-0213
Hao, J., Gan, J., & Zhu, L. (2022). MOOC performance prediction and personal performance improvement via Bayesian network. Education and Information Technologies, 27(5), 7303–7326. https://doi.org/10.1007/s10639-022-10926-8
Helal, S., Li, J., Liu, L., Ebrahimie, E., Dawson, S., Murray, D. J., & Long, Q. (2018). Predicting academic performance by considering student heterogeneity. Knowledge-Based Systems, 161(December 2017), 134–146. https://doi.org/10.1016/j.knosys.2018.07.042
Hernández-Blanco, A., Herrera-Flores, B., Tomás, D., & Navarro-Colorado, B. (2019). A Systematic Review of Deep Learning Approaches to Educational Data Mining. Complexity, 2019. https://doi.org/10.1155/2019/1306039
Injadat, M. N., Moubayed, A., Nassif, A. B., & Shami, A. (2020). Systematic ensemble model selection approach for educational data mining. Knowledge-Based Systems, 200, 105992. https://doi.org/10.1016/j.knosys.2020.105992
Jihad, A. (2009). Evaluasi Pembelajaran. Multi Pressindo.
Liu, D., Zhang, Y., Zhang, J. U. N., Li, Q., Zhang, C., & Yin, Y. U. (2020). Multiple Features Fusion Attention Mechanism Enhanced Deep Knowledge Tracing for Student Performance Prediction. 8. https://doi.org/10.1109/ACCESS.2020.3033200
Liu, Y., Tian, K., Wang, H., Liu, H., Wu, Y., & Chen, X. (2021). Data-driven based student programming competition award prediction via machine learning models. ICCSE 2021 - IEEE 16th International Conference on Computer Science and Education, 463–468. https://doi.org/10.1109/ICCSE51940.2021.9569407
Maheswari, K., Priya, A., Balamurugan, A., & Ramkumar, S. (2021). Analyzing student performance factors using KNN algorithm. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.12.1024
Park, S., & Kim, N. H. (2022). University students’ self-regulation, engagement and performance in flipped learning. European Journal of Training and Development, 46(1–2), 22–40. https://doi.org/10.1108/EJTD-08-2020-0129
Rajagukguk, S. A. (2021). Tinjauan Pustaka Sistematis: Prediksi Prestasi Belajar Peserta Didik Dengan Algoritma Pembelajaran Mesin. Jurnal SNATi, 1.
Ramaswami, M., & Rathinasabapathy, R. (2012). Student Performance Prediction Modelling: A Bayesian Network Approach Framework of Int elligent Recommendat ion Syst em for a Privat e Tert iary Inst it ut ion in Nigeria Student Performance Prediction.
Rebai, S., ben Yahia, F., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70(August 2018), 100724. https://doi.org/10.1016/j.seps.2019.06.009
Sandra, L., Lumbangaol, F., & Matsuo, T. (2021). Machine Learning Algorithm to Predict Student’s Performance: A Systematic Literature Review. TEM Journal, 10(4), 1919–1927. https://doi.org/10.18421/TEM104-56
Sukmadinata, N. S. (2005). Landasan Psikologi Proses Pendidikan. Remaja Rosda Karya.
Sundar, P. V. P. (2013). A COMPARATIVE STUDY FOR PREDICTING STUDENT’S ACADEMIC PERFORMANCE USING BAYESIAN NETWORK CLASSIFIERS. IOSR Journal of Engineering, 03(02), 37–42. https://doi.org/10.9790/3021-03213742
Tinuke Omolewa, O., Taye Oladele, A., Adekanmi Adeyinka, A., & Roseline Oluwaseun, O. (2019). Prediction of Student’s Academic Performance using k-Means Clustering and Multiple Linear Regressions. Journal of Engineering and Applied Sciences, 14(22), 8254–8260. https://doi.org/10.36478/jeasci.2019.8254.8260
Xing, W., Li, C., Chen, G., Huang, X., Chao, J., Massicotte, J., & Xie, C. (2021). Automatic Assessment of Students’ Engineering Design Performance Using a Bayesian Network Model. Journal of Educational Computing Research, 59(2), 230–256. https://doi.org/10.1177/0735633120960422
Zheng, X., Aragam, B., Ravikumar, P., & Xing, E. P. (2018). Dags with no tears: Continuous optimization for structure learning. Advances in Neural Information Processing Systems, 2018-Decem(1), 9472–9483.
DOI: https://doi.org/10.35445/alishlah.v15i2.2831
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Sabar Aritonang Rajagukguk
Al-Ishlah Jurnal Pendidikan Abstracted/Indexed by:
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.