# Computational Bibliometric Analysis of Research on Bloom Digital Taxonomy and Critical Thinking

Gunarso<sup>1</sup>, Muhammad Syafri Syamsudin<sup>2</sup>, Muhammad Nursalman<sup>3</sup>, Enjang Ali Nurdin<sup>4</sup>, Anggi Fitri<sup>5</sup>

- <sup>1</sup> Universitas Pendidikan Indonesia, Bandung, Indonesia; gunarso@upi.edu
- <sup>2</sup> Universitas Pendidikan Indonesia, Bandung, Indonesia; m.syafri.syamsudin@upi.edu
- <sup>3</sup> Universitas Pendidikan Indonesia, Bandung, Indonesia; mnursalman@upi.edu
- <sup>4</sup> Universitas Pendidikan Indonesia, Bandung, Indonesia; enjang\_cs@upi.edu
- <sup>5</sup>STAI Al-Kifayah Riau, Pekanbaru, Indonesia; anggifitri@stit-alkifayahriau.ac.id

## **ARTICLE INFO**

## Keywords:

bibliometric; taxonomy bloom digital; critical thinking

#### Article history:

Received 2023-07-11 Revised 2023-11-03 Accepted 2024-03-26

# **ABSTRACT**

One important step towards understanding the development, trends, and effects in the context of contemporary education is to conduct a computational bibliometric analysis of research focused on Bloom Digital Taxonomy and elements of critical thinking studies. This research was conducted to perform a bibliometric analysis of the digital Bloom's taxonomy and critical thinking. The research method employed was bibliometric analysis, utilizing machine learning to map the data. The research comprised four stages of bibliometric analysis, namely: (a) data retrieval through the application of Publish or Perish, (b) data processing, (c) data mapping using machine learning, and (d) data analysis of the mapping using the R programming language. The research materials were published in 2015 and collected from the Google Scholar database in 2023. The search process involved the usage of the keywords "Taxonomy Bloom Digital" and "Critical Thinking." The results demonstrated that bibliometric analysis and mapping of 500 publications using machine learning-enabled a deeper understanding of the development, trends, and crucial aspects of research in this field. By employing a bibliometric analysis approach and implementing machine learning, this study contributes to the comprehension of digital Bloom's taxonomy and critical thinking while providing an overview of research trends.

This is an open access article under the <u>CC BY-NC-SA</u> license.



Corresponding Author:

Muhammad Nursalman

Universitas Pendidikan Indonesia, Bandung, Indonesia; mnursalman@upi.edu

## 1. INTRODUCTION

In the last few decades, digital technology in the world of education has experienced extraordinary progress. The way we learn and teach has been completely transformed by these advances. In the face of these changes, the idea of Bloom's Digital Taxonomy is a major advance; it translates conventional Bloom's Taxonomy ideas into a digital learning context full of potential. Critical studies in education are becoming increasingly popular, especially in terms of studying how and how digital technology influences critical learning and critical thinking, which are increasingly important in this era.

The principles of digital Bloom's taxonomy are an extension of the original Bloom's taxonomy, encompassing skills and activities related to digital technology (Lim, 2021). Digital Bloom's taxonomy introduces three new levels to the existing levels of the original Bloom's taxonomy, namely creating, evaluating, and analyzing within the context of digital technology (Goranova, 2019). The application of the principles of digital Bloom's taxonomy in instructional material development can assist teachers in integrating digital technology into teaching and enhancing students' technological skills (Matore, 2021). By considering the higher levels of digital Bloom's taxonomy in instructional material development, students will become more proficient in using digital technology to create, evaluate, and analyze information, thereby enhancing their critical thinking skills in problem-solving (Sumartini & Pawarti, 2022).

Critical and creative thinking skills are specific aspects of higher-order thinking skills (Putera, Harti, & Sakti, 2021). The National Strategies Secondary emphasizes the need to prioritize the development of critical thinking skills as they are linked to data analysis and evaluation (Pramesswari, Widodo, & Qosyim, 2016). Critical thinking is characterized by a willingness to deeply analyze problems and issues within one's range of experience (Susilowati & Sumaji, 2021). It involves knowledge of examination methods and logical reasoning, serving as a skill to apply these methods (Wahyuningsih, Kurniawan, Maison, & Aziz, 2021).

Bibliometric analysis or bibliometric methods, also known as scientometrics, is a part of research evaluation methodology that focuses on the analysis of scholarly literature produced. This analysis is facilitated through the use of proprietary methods (Donthu, Kumar, Mukherjee, Pandey, & Lim, 2021). Bibliometric methods refer to measurement techniques in literature using a statistical approach that involves the application of quantitative analysis. These methods are employed to analyze various aspects of scholarly literature, such as publication patterns, citation networks, author productivity, and research impact. By utilizing quantitative measures and statistical analysis, bibliometric methods provide valuable insights into the quantitative characteristics and trends within a specific field of research (M. Iqbal Firmansyah, Myrna, & Widianingsih, 2021). Bibliometric analysis can uncover the fact that only a small number of studies remain uncited after several years, as citations reflect the impact of the research conducted. The findings of the research also indicate that this journal is highly effective in selecting meaningful research. Therefore, researchers are encouraged to consider these characteristics when making their decisions (Pendlebury, 2008). Bibliometric search can analyze bibliographic metadata, including citations (impact factor), publication trends, author collaborations, agency collaborations, trending term titles, trending term abstracts, trending term author keywords, country statistics, research trends, journals, and publishers (Singleton, 2010); (Husaeni & Husaeni, 2022).

Various types of research have been conducted utilizing bibliometrics with the aid of mapping machine learning, including in the field of educational technology. Bibliometric analysis using VOSviewer can help researchers identify key research areas, influential authors, co-authorship networks, citation patterns, and emerging trends within the domain of Educational Technology. It enables a visual representation of the research landscape, facilitating a better understanding of the field's structure and dynamics. Researchers can leverage these insights to inform their own studies, collaborations, and decision-making processes (Gunes, 2023), STEM Education (Zhan, Shen, Xu, Niu, & You, 2022), Teacher Professional Development (Hoang, 2023), Pedagogical Approaches (del Arco, Mercadé-Melé, Ramos-Pla, & Flores-Alarcia, 2022), Teacher leadership scholarship (Hui-Ling Wendy Pan, 2023), Internet of Things (Leong, 2021), Big Data analytics (Ardito, Scuotto, Del Giudice, & Petruzzelli, 2019), E-Learning (Deti & Mandasari, 2021), supply chain management (Kumar & Kushwaha, 2015), Scholarly Journals Proquest Dengan (Prasetyo, 2021), Government Program Coordination (Utami, & Karlina, 2022), Human Resources (Wedhatama, Hanoum, & Prihananto, 2021), Marine Research in Indonesia (Royani & Idhani, 2018), COVID-19 (Nurfauzan & Faizatunnisa, 2021).

The development of the curriculum refers to the progression of time, scientific knowledge, technology, and the adaptation to the needs of the 21st-century job market, which necessitates changes

in the global order of human life, demanding the advancement of critical thinking skills. (Nugraha, 2022). The learning process, as a platform for enhancing critical thinking skills, needs to continuously innovate and adapt to evolving patterns of development (Saputra & Salim, 2020). The changes occurring in the field of education can be observed through the emergence of various innovations, both in terms of educational systems (B. Rahayu & Fitriyani, 2021). One visible aspect of these changes is the curriculum reform in Indonesia, which is carried out as a response to the developments and needs of the 21st century. These changes encompass not only the implementation of teaching and learning processes but also instructional media and other aspects related to the educational domain. The curriculum reform serves as an anticipation to align education with the demands and requirements of the rapidly evolving 21st-century landscape (Shavelson, Zlatkin-Troitschanskaia, Beck, Schmidt, & Marino, 2019). This represents an enhancement of the curriculum, which is based on both character and competency (Achmad, Ratnasari, Amin, Yuliani, & Liandara, 2022).

The new paradigm of education (Achmad et al., 2022) emphasizes the student as a learner and individual who has the potential to learn and develop according to their personal growth (Atris Yuliarti Mulyani, 2022). Students are encouraged to actively seek and develop knowledge (Saputra & Salim, 2020). The truth of knowledge is not solely limited to technological advancements; rather, it involves a shift in the role of teachers. Teachers are no longer seen as the ultimate authority on knowledge or indoctrinators but rather as facilitators who guide students towards constructing knowledge on their own (Florentina Turnip & Karyono, 2021).

Based on several studies related to critical thinking conducted by (Sutanto, Irwan Koto, & Endang Widi Winarni, 2022), it is stated that initially, the achievement of student learning outcomes below the Minimum Mastery Criteria (KKM) was 66% out of 15 students. One possible cause is that the teacher's activities predominantly involve providing explanations of the learning material, which leads to students being expected to copy information from their textbooks. As a result, students are not trained to think critically. A similar issue was expressed by (Pramesswari, Widodo, & Qosyim, 2016), who stated that the low ability of students to think critically was evident from a test consisting of five critical thinking questions. The test was conducted to assess the students' initial critical thinking abilities, and the average result was 39.20%, falling into the category of poor performance. Furthermore, a study conducted by (Wahyuningsih, Kurniawan, Maison, & Aziz, 2021) indicated that the critical thinking skills of students in XA class at SMK BIM Ngawi were still low and needed further improvement. In order for students to think critically, they need to learn various aspects that can enhance their performance, including understanding other people's arguments and opinions, critically evaluating those arguments, and developing and defending well-supported arguments based on their understanding (Kurniyasari, Hidayat, & Harfian, 2019).

In the field of education, Bloom Digital Taxonomy (BDT) and critical thinking are collaborative aspects that garner attention from educators. BDT is an innovation of the original Bloom's taxonomy, incorporating skills and activities related to digital technology. Additionally, critical thinking is highly regarded for the development of higher-order thinking skills. However, there are still gaps in understanding and research on BDT and critical thinking that need to be addressed. Firstly, while research trends related to BDT and critical thinking have been explored in bibliometric studies, there is still a lack of comprehensive bibliometric analysis that incorporates computational approaches. This gap encompasses the development of innovative methods and tools to analyze large and complex datasets in this field. Secondly, previous bibliometric studies may not have thoroughly examined author collaborations, top publishing journals, or current publication trends in the context of BDT and critical thinking. Closing this gap requires a more in-depth and detailed bibliometric analysis to understand patterns of author collaboration, influential journals, and publication trends related to these subjects. Addressing these gaps will necessitate comprehensive bibliometric analyses that integrate computational approaches, as well as conducting more detailed investigations to uncover patterns of author collaboration, influential journals, and current publication trends in the realm of BDT and critical thinking.

This research focuses on the application of computational approaches in bibliometric analysis and critical thinking within the context of BDT. To address these gaps, the study utilizes the latest computational tools and techniques, specifically machine learning, using the R Studio programming language, to analyze large and complex datasets related to BDT and critical thinking. Additionally, this research aims to contribute to innovation by providing a deeper understanding of author collaborations, influential journals, and current publication trends in the context of BDT and critical thinking. By analyzing relevant data, this study offers new insights into the structure of author collaborations, influential journals in the field, and current trends. The use of machine learning and computational techniques allows for a comprehensive analysis of a vast amount of data, providing a more nuanced understanding of the research landscape and shedding light on emerging patterns and trends.

#### 2. METHODS

Bibliometric analysis research using machine learning consists of eight stages, namely defining the research question, identifying literature sources, utilizing applications such as Publish or Perish for data retrieval, collecting data, importing and cleaning the data, text processing, literature analysis, data visualization, and interpretation of the results (Maria, 2018) For a clearer understanding, the methodology can be described as follows:

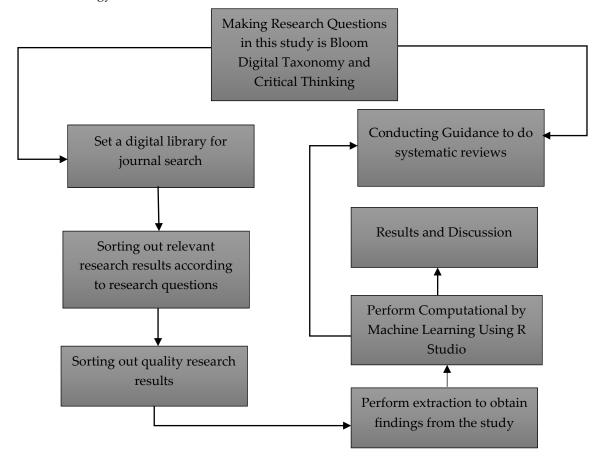



Figure 1. Stages of bibliometric analysis.

## 3. FINDINGS AND DISCUSSION

# 3.1 Citation Analysis

In the academic and scientific realm, the quality of scholarly publications is assessed, among other factors, by measuring the number of times a work is cited by other researchers. A cited work indicates its significance and impact in its respective field. In this study, a total of 200 articles were found with the predetermined keywords from the years 2015 to 2022. Subsequently, a citation analysis was conducted, revealing that the total number of citations per year from 2015 to 2022 was 6,906, with an average citation of 34.35. The H-index of all papers related to the theme was found to be 33, while the g-index was 81.

**Table 1.** Publications on taxonomy bloom digital and critical thinking with the highest number of citations

| No | Cites | Author                                          | Title                                                                                                                                                   | Years | Source                                            |
|----|-------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------|
| 1  | 2932  | JC Bean, D<br>Melzer                            | Engaging ideas: The professor's guide<br>to integrating writing, critical thinking,<br>and active learning in the classroom                             | 2021  | Books.google.co<br>m                              |
| 2  | 316   | CM Tang, LY<br>Chaw                             | Digital Literacy: A Prerequisite for<br>Effective Learning in a Blended<br>Learning Environment?                                                        | 2016  | Electronic<br>Journal of E-<br>learning           |
| 3  | 317   | A Khan, O<br>Egbue, B Palkie                    | Active learning: Engaging students to maximize learning in an online course                                                                             | 2017  | Electronic<br>Journal                             |
| 4  | 240   | GS Pratama, H<br>Retnawati                      | Urgency of higher order thinking skills (HOTS) content analysis in mathematics textbook                                                                 | 2018  | Journal of<br>Physics                             |
| 5  | 239   | RJ Sternberg, DF<br>Halpern                     | Critical thinking in psychology                                                                                                                         | 2020  | Canadian<br>Center of<br>Science and<br>Education |
| 6  | 235   | EA Van Vliet, JC<br>Winnips                     | Flipped-class pedagogy enhances<br>student metacognition and<br>collaborative-learning strategies in<br>higher education but effect does not<br>persist | 2015  | CBE—Life<br>Sciences                              |
| 7  | 202   | SY Rieh, K<br>Collins-<br>Thompson              | Towards searching as a learning process: A review of current perspectives and future directions                                                         | 2016  | journals.sagepu<br>b                              |
| 8  | 178   | MT Munir, S<br>Baroutian, BR<br>Young, S Carter | Flipped classroom with cooperative learning as a cornerstone                                                                                            | 2018  | Education for chemical                            |
| 9  | 176   | CM Klinge                                       | A conceptual framework for mentoring in a learning organization                                                                                         | 2015  | Adult learning                                    |
| 10 | 176   | T Keane, WF<br>Keane, AS<br>Blicblau            | Beyond traditional literacy: Learning and transformative practices using ICT                                                                            | 2016  | Education and<br>Information                      |



Figure 2. The highest number of citations

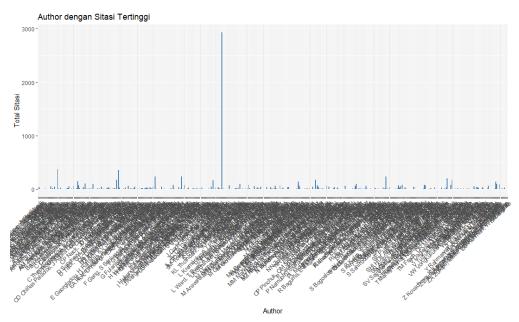



Figure 3. The author with the highest citation

# 3.2 Publication Trend Analysis

To find out how much research has been carried out by productive researchers in scientific studies in a predetermined period of time (S. Rahayu & Saleh, 2017). In Figure 4, it illustrates the trend of research development related to Taxonomy Blooms Digital and Critical Thinking in journals indexed by Google Scholar from 2015 to 2023. The research indicates that the highest number of publications occurred in 2020, with 88 publications. There was a decrease in the number of publications in 2021, with 83 publications. In 2022, there were 57 publications, and there were no publications in 2023.

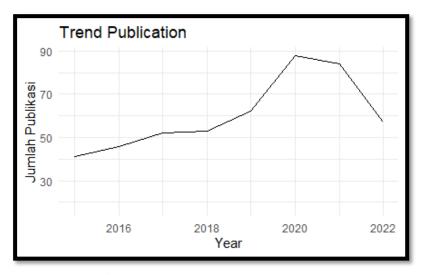
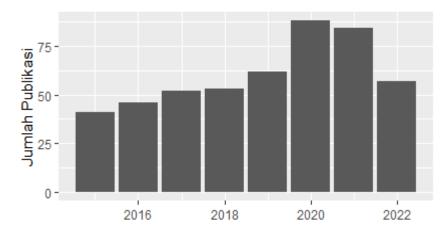




Figure 4. The development of publications on Taxonomy Blooms Digital and Critical Thinking



**Figure 5.** Number Of Publications With The Keywords Taxonomy Blooms Digital And Critical Thinking

# 3.3 Trend of Publication Development Based on Keywords

The most common and frequently used keywords are employed to determine publication trends based on keywords. The objective of this analysis is to provide readers with an overview of the current trends and to gain deeper knowledge regarding the keywords used, reflecting interests and relevant research areas.




Figure 6. Development of Publications Based on General Keywords

From Figure 6, it can be concluded that the analysis of common keywords related to Taxonomy Blooms Digital and Critical Thinking reveals several findings. Based on the positive sentiment analysis, there is a strong correlation between critical thinking and learning skills, which have been widely implemented in education and have a positive influence on students' ability to engage in higher-order thinking (HOTs). In this regard, critical thinking can enhance students' problem-solving abilities. On the other hand, the negative sentiment analysis indicates that the use of Taxonomy Blooms Digital to support the learning process has not been widely implemented. This suggests a gap in utilizing digital tools and technologies to enhance the learning experience. From the results of this analysis, it can be inferred that critical thinking and learning skills are essential in fostering students' ability to engage in higher-order thinking (HOTs). However, there is a need to incorporate the use of Taxonomy Blooms Digital to effectively measure and assess the achievement of the learning process. This integration can provide a framework for evaluating the effectiveness of instructional strategies and ensuring the alignment of educational practices with the desired learning outcomes.

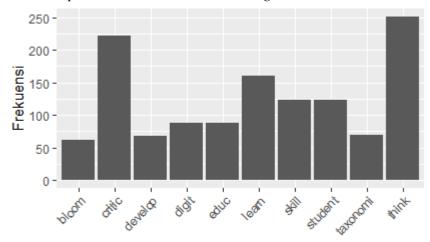



Figure 7. Filter based on the keywords "taxonomy", "bloom", and "digital"

After filtering the common and frequently used keywords, it can be concluded from Figure 7 that the term "taxonomy" appears 70 times after filtering, the term "bloom" appears 60 times after filtering, and the term "digital" appears 90 times after filtering. This analysis highlights the importance of these words in the context of the relationship between taxonomy bloom digital and critical thinking. Furthermore, the bar chart presented provides a clear comparison for each term, which is relevant to the given data. This visual representation offers an easier-to-understand overview of the frequency of

occurrence for these words and allows for a more comprehensive understanding of their relative appearances.

## 3.4 Trend Analysis of Title Terms

The objective of this analysis is to examine the content, patterns, and tendencies of the document collection by measuring the strength of terms and counting the occurrence of research article keywords appearing together in the studied articles (Chen, 2003, Russell, J.M., Rousseau, 2015). Out of the 500 publications, using at least thirteen conditions, the results indicate that 420 show correlations. The term "thinking skill" appears most frequently in the article titles, occurring 133 times. Meanwhile, the term "taxonomy blooms digital" appears 34 times in the article titles.

| Cluster | Item                                           | Link/Strange Link |
|---------|------------------------------------------------|-------------------|
| 1       | Critical Thinking, Higher Level, Hight Other   |                   |
|         | Thinking Skill, Critical Thinking, Creative    | 34/202            |
|         | Thinking                                       |                   |
|         | Bloom, Digital Taxonomy, Critical Thinking     |                   |
| 2       | Ability, Higher Other Thinking, Collaboration, | 32/152            |
|         | Communication                                  |                   |
|         | Bloom Digital Taxonomy, Cognitive Domain,      |                   |
| 3       | Framwork, Critical Reflection, Creativity,     | 29/92             |
|         | Knowlage                                       |                   |
| 4       | Example, Higher Level, Strategy, Impact        | 14/23             |

**Table 2.** Mapping cluster distribution term title

## 3.5 Trend Analysis Based on Abstracts

Based on the analysis of frequently used terms in the abstracts of articles related to Taxonomy Bloom Digital and Critical Thinking, a total of 1349 terms were analyzed across 21 articles. Among these, the term "thinking" appeared the most frequently, with 690 occurrences. The most commonly used terms in the abstracts that are relevant to the topic are as follows: "critical" with 600 occurrences, "taxonomy" with 510 occurrences, "bloom" with 480 occurrences, "skill" with 200 occurrences, and "digital" with 180 occurrences. These findings provide insights into the prominent themes and concepts discussed in the analyzed articles, emphasizing the significance of critical thinking in the context of taxonomy, Bloom's taxonomy, digital technologies, and skill development.

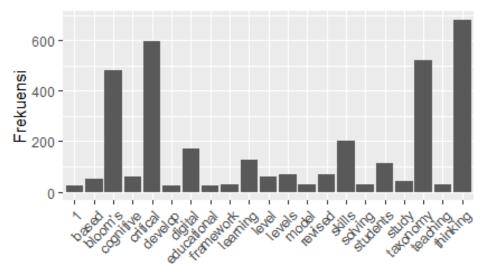



Figure 8. Trend analysis based on the abstract

From the analyzed abstract data, it was found that the length of the abstracts ranged around 150 words, with a minimum length of approximately 50 words and a maximum length of around 300 words. Based on these findings, it can be concluded that the abstract information in the processed data is both detailed and concise. The frequently occurring keywords in the dataset are "thinking," "taxonomy," "critical," "Bloom's," "skills," and "digital." These topics serve as the primary focus of the research in the utilized dataset. Examining Figure 8, it can be inferred that there is a connection between each keyword within the abstracts. "Critical thinking" is associated with "cognitive problem-solving skills." However, the integration of "Bloom's digital taxonomy" with "critical thinking" appears to be less explored. This demonstrates the relationships and connections between concepts in research focused on Bloom's taxonomy and critical thinking. Overall, these findings shed light on the interplay and interrelationships between the concepts discussed in research papers that center around Bloom's taxonomy and critical thinking.

| Cluster | Item                                              | Link/Strange Link |  |
|---------|---------------------------------------------------|-------------------|--|
| 1       | Blooms Digital Taxonomy, Cognitive Domain,        | 8/52              |  |
|         | Higher Order Thinking Skill, Critical Reflection. |                   |  |
| 2       | Blooms Taxonomy, Digital Taxonomy, Critical       | 9/262             |  |
| 2       | Thinking, Communication.                          |                   |  |
| 2       | Thinking Skill, , Higher Order Thinking Skill,    | 32/415            |  |
| 3       | Creative Thinking, Communication                  |                   |  |

Table 3. Mapping cluster distribution Abstract

## 3.6 Analysis of Articles Based on Country

This analysis was conducted using the publisher addresses listed in the articles obtained from the Publish or Perish application. Based on the results, it can be concluded that authors of articles related to Taxonomy Bloom Digital and Critical Thinking are from various countries, with varying citation counts. The countries with the highest to lowest citation counts include the United States (41 citations), the United Kingdom (36 citations), Germany (28 citations), Italy (21 citations), Canada (20 citations), France (19 citations), Netherlands (13 citations), Indonesia (8 citations). These findings suggest that researchers from different countries have made significant contributions to the literature on Taxonomy Bloom Digital and Critical Thinking, with the United States, the United Kingdom, and Germany being the most prominent in terms of citation counts. It highlights the international interest and collaboration in the field, as well as the impact of research conducted in these countries.

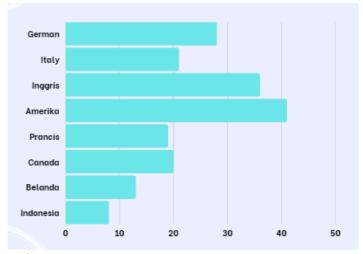



Figure 9. Articles based on countries with high citations

#### Discussion

Bibliometric analyses conducted on research on Bloom's digital taxonomy and critical thinking provide an important picture of the state of the field. This is done by data visualisation using machine learning. This research collected 500 highly relevant articles covering the years 2015–2023. The goal is to discover and analyse various research trends related to the specified keywords.

From the analysis, it can be seen that articles about Bloom's Digital Taxonomy and Critical Thinking received an average of 1465.25 citations per year, with an average of 23.44 citations per article. These findings are important because they reflect the scientific impact and recognition of this field of research. The results of this research underline the importance of bibliometric analysis and data mapping using machine learning techniques in gaining a deeper understanding of developments, trends, and important aspects of research in this field. Through this method of analysis, we gain insight into how this academic field has developed over time, and citation density indicates the influence and relevance of the topic.

From a broader research perspective, these findings confirm the growing importance of Bloom's Digital Taxonomy and Critical Thinking in the educational domain, driven by the increasing integration of digital technologies in learning. Additionally, this research has broadened our understanding of the evolving research landscape in these domains. In the context of previous research and working hypotheses, our findings validate the increasing scholarly attention to Bloom's digital taxonomy and critical Thinking. The high level of citations indicates that these topics are of great importance in contemporary educational research and have stimulated substantial academic discussion. This is in line with research conducted by (Vahdat, 2021), which states that awareness is increasing about the importance of digital taxonomies in the context of educational technology. This reflects the need for a clear and structured framework to understand various aspects of the use of digital technology in education. In reality, many students still have low critical thinking skills (Karmila, Achmad, & Utami, 2023). Furthermore, Bloom's Taxonomy is assumed to facilitate educators' work to differentiate between students' high-level skills and low-level skills (Coşgun Ögeyik, 2022). One of the main goals of education is to develop critical thinking skills, an appropriate combination is to apply Bloom's digital taxonomy as a measuring tool that is considered the most relevant (Rahman & Manaf, 2017). Although our results offer insightful information, it is crucial to remember that they cover a limited period of time and could have been impacted by the availability of sources and current digital trends at the time of research. Subsequent investigations ought to persist in tracking and evaluating this domain as it advances, maybe delving into more recent data after 2023. This research has a wide range of consequences, from how it may affect curriculum creation to how important it will be in

determining how digital education develops in the future. It is becoming more and more crucial for educators and scholars to comprehend the mechanics of Bloom's digital taxonomy and critical thinking as the field of education continues to adjust to technological advancements. The findings of this study can be used as a foundation for other research and interventions, supporting the ongoing enhancement of teaching methods in the digital age.

## 4. CONCLUSION

In this study, bibliometric analysis was employed to scrutinize research on Taxonomy Bloom Digital and Critical Thinking, leveraging data visualization techniques aided by machine learning. A comprehensive collection of 500 highly pertinent articles was gathered from the search query, facilitating an exploration of prevalent research trends within the specified domain. Spanning the years 2015 to 2023, the analysis revealed an average citation rate of 1465.25 per year per article, indicating a substantial scholarly interest in this subject matter, with an average of 23.44 citations per article. These findings underscore the utility of bibliometric analysis coupled with machine learning in unraveling the intricacies of research evolution and identifying significant themes within this field. By harnessing bibliometric analysis and machine learning methodologies, this study not only enhances our comprehension of Taxonomy Bloom Digital and Critical Thinking but also sheds light on emerging research trajectories. However, it is crucial to acknowledge the limitations inherent in this research endeavor. Firstly, the relevance of the data sources utilized may vary, potentially impacting the validity of the findings. Moreover, the accuracy and completeness of the data hinge upon the fidelity of information provided by the sources. Moving forward, avenues for further investigation should focus on elucidating the nuanced influences on critical learning and thinking, particularly by delving into subtopics encapsulated within Bloom's Digital Taxonomy and Critical Thinking. This exploration would furnish valuable insights into the intricate dynamics shaping scholarly discourse in this field, thereby enriching our understanding and informing future research endeavors.

**Conflicts of Interest:** The authors declare that there are no conflicts of interest regarding the publication of this article. They affirm that the article is free from plagiarism.

#### **REFERENCES**

- Achmad, G. H., Ratnasari, D., Amin, A., Yuliani, E., & Liandara, N. (2022). Penilaian Autentik pada Kurikulum Merdeka Belajar dalam Pembelajaran Pendidikan Agama Islam di Sekolah Dasar. *Edukatif: Jurnal Ilmu Pendidikan*, 4(4), 5685–5699. https://doi.org/10.31004/edukatif.v4i4.3280
- Ardito, L., Scuotto, V., Del Giudice, M., & Petruzzelli, A. M. (2019). A bibliometric analysis of research on Big Data analytics for business and management. *Management Decision*, *57*(8), 1993–2009. https://doi.org/10.1108/MD-07-2018-0754
- Atris Yuliarti Mulyani. (2022). Pengembangan Critical Thinking Dalam Peningkatan Mutu Pendidikan di Indonesia. *DIAJAR: Jurnal Pendidikan Dan Pembelajaran*, 1(1), 100–105. https://doi.org/10.54259/diajar.v1i1.226
- Coşgun Ögeyik, M. (2022). Using Bloom's Digital Taxonomy as a framework to evaluate webcast learning experience in the context of Covid-19 pandemic. *Education and Information Technologies*, 27(8), 11219–11235. https://doi.org/10.1007/s10639-022-11064-x
- del Arco, I., Mercadé-Melé, P., Ramos-Pla, A., & Flores-Alarcia, O. (2022). Bibliometric analysis of the flipped classroom pedagogical model: Trends and strategic lines of study. *Frontiers in Education*, 7. https://doi.org/10.3389/feduc.2022.1022295
- Deti, R., & Mandasari, V. (2021). A Bibliometric Analysis of E-Learning Research Trends. *International Journal of Theory and Application in Elementary and Secondary School Education*, 3(1), 74–81. https://doi.org/10.31098/ijtaese.v3i1.518

- Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. *Journal of Business Research*, 133(March), 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
- Florentina Turnip, R., & Karyono, H. (2021). Pengembangan E-modul Matematika Dalam Meningkatkan Keterampilan Berpikir Kritis. *Jurnal Edukasi Matematika Dan Sains*), 9(2), 485–498. https://doi.org/10.25273/jems.v9i2.11057
- Gunes, U.,. (2023). Educational Technology: A Bibliometric Approach. Marmara Üniversitesi Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi, 57 (57), 60-90. doi:10.15285/maruaebd.1148289
- Hui-Ling Wendy Pan, P. D. (2023). A bibliometric analysis of the teacher leadership scholarship,. *Teaching and Teacher Education*, 121, 103936. doi:https://doi.org/10.1016/j.tate.2022.103936.
- Husaeni, D. F. Al, & Husaeni, D. N. Al. (2022). Computational bibliometric analysis of research on science and islam with VOSviewer: Scopus database in 2012 to 2022. *Asean ..., 1*(1), 39–48. Retrieved from https://ejournal.bumipublikasinusantara.id/index.php/ajores/article/view/185%0Ahttps://ejournal.bumipublikasinusantara.id/index.php/ajores/article/viewFile/185/178
- Karmila, W., Achmad, S., & Utami, U. (2023). High-Order Questions Improve Students 'Critical Thinking Skills In Elementary Schools. *International Journal of Elementary Education*, 7(2), 196–203.
- Kumar, A., & Kushwaha, G. S. (2015). Bibliometric analysis of supply chain management: An international journal from 2005-2014. *International Journal of Supply Chain Management*, 4(2), 90–105
- Kurniyasari, H., Hidayat, S., & Harfian, B. A. A. (2019). Analisis Keterampilan Berikir Kritis Siswa Sma Di Kecamatan Sako Dan Alang-Alang Lebar. *Bioma: Jurnal Biologi Dan Pembelajaran Biologi, 4*(1), 1. https://doi.org/10.32528/bioma.v4i1.2646
- Leong, Y. T. (2021)., "Bibliometric and content analysis of the internet of things research: a social science perspective",. *Online Information Review*, 1148-1166. doi:https://doi.org/10.1108/OIR-08-2020-0358
- M. Iqbal Firmansyah, I., Myrna, R., & Widianingsih, I. (2021). Analisis Bibliometric Dari Program Hibah (Bibliometric of Grants Program). *Shaut Al-Maktabah*: *Jurnal Perpustakaan, Arsip Dan Dokumentasi,* 13(2), 131–144. https://doi.org/10.37108/shaut.v13i2.565
- Maria, R. (2018). Analisis High Oder Thinking Skilss (HOTS) Taksonomi Bloom Dalam Buku Teks Sejarah Indonesia. *Universitas Pendidikan Indonesia*, 1–10.
- Nugraha, T. S. (2022). *Inovasi Kurikulum*. 250–261.
- Pendlebury, D. a. (2008). Using Bibliometrics in Evaluating Introduction: the main tool of science. 8.
- Pramesswari, A. S., Widodo, W., & Qosyim, A. (2016). Penerapan Strategi Debat Aktif untuk Melatihkan Ketrampilan Berpikir Kritis pada Materi Pemanasan Global. *Pensa E-Jurnal:Pendidikan Sains*, 4(3), 1–6. Retrieved from https://jurnalmahasiswa.unesa.ac.id/index.php/pensa/article/view/15331
- Rahayu, B., & Fitriyani. (2021). Peningkatan Hasil Belajar Dengan Model Pembelajaran Discovery Learning Pada Siswa Kelas V Sekolah Dasar. *JPD: Jurnal Pendidikan Dasar*, 12(2), 103–113.
- Rahayu, S., & Saleh, A. R. (2017). Studi Bibliometrik dan Sebaran Topik Penelitian pada Jurnal Hayati Terbitan 2012-2016. *Pustakaloka*, 9(2), 201. https://doi.org/10.21154/pustakaloka.v9i2.1092
- Rahman, S. A., & Manaf, N. F. A. (2017). A Critical Analysis of Bloom's Taxonomy in Teaching Creative and Critical Thinking Skills in Malaysia through English Literature. *English Language Teaching*, 10(9), 245. https://doi.org/10.5539/elt.v10n9p245
- Saputra, H. N., & Salim, S. (2020). Penerapan Bahan Ajar Berbasis Keterampilan Berpikir Kritis. *PEDAGOGIK: Jurnal Pendidikan*, 7(1), 22–46. https://doi.org/10.33650/pjp.v7i1.1078
- Shavelson, R. J., Zlatkin-Troitschanskaia, O., Beck, K., Schmidt, S., & Marino, J. P. (2019). Assessment of University Students' Critical Thinking: Next Generation Performance Assessment. *International Journal of Testing*, 19(4), 337–362. https://doi.org/10.1080/15305058.2018.1543309
- Singleton, A. (2010). Bibliometrics and Citation Analysis; from the Science Citation Index to

- Cybermetrics. Learned Publishing, 23(3), 267–268. https://doi.org/10.1087/20100312
- Sutanto, S. S., Irwan Koto, & Endang Widi Winarni. (2022). Pengembangan Bahan Ajar Digital Berbasis Discovery Learning dengan Augmented Reality Untuk Meningkatkan Kemampuan Berfikir Kritis Siswa Pada Pembelajaran IPA di Sekolah Dasar. *Jurnal Kajian Pendidikan Dasar (Kapedas)*, 1(2), 175–187. https://doi.org/10.33369/kapedas.v1i2.23196
- Vahdat, M. &. (2021). Digital Taxonomy: A Literature Review. *Journal of Information Technology Education: Research*, 120-131.
- Wahyuningsih, D., Kurniawan, D. A., Maison, & Aziz, A. (2021). Analisis Kemampuan Berpikir Kritis Siswa Pada Materi Fluida Statis. *Seminar Nasional Matematika Dan Sains*, 400–406. Retrieved from https://prosiding.biounwir.ac.id/article/download/170/152
- Zhan, Z., Shen, W., Xu, Z., Niu, S., & You, G. (2022). A bibliometric analysis of the global landscape on STEM education (2004-2021): towards global distribution, subject integration, and research trends. *Asia Pacific Journal of Innovation and Entrepreneurship*, 16(2), 171–203. https://doi.org/10.1108/apjie-08-2022-0090